
CiaransLabBook
Release v0.0.1

Jan 29, 2021

Contents

1 Docker 3

2 CMake 5

3 Git 7

4 Linux 9

5 Building on linux 11

6 Windows 13

7 Travis 31

8 Random Notes 33

9 Indices and tables 35

i

ii

CiaransLabBook, Release v0.0.1

sphinx-quickstart on Tue Jul 28 12:47:19 2020. You can adapt this file completely to your liking, but it should at least
contain the root toctree directive.

I keep looking up the same commands over and over again, so here I’ll denote some useful ones.

Contents 1

CiaransLabBook, Release v0.0.1

2 Contents

CHAPTER 1

Docker

1.1 Commands

Turn off all containers

docker container stop $(docker container ls -aq)

using a filter

docker container prune --filter "until=12h"

A great resource on explaining the docker basics

Docker build

DOCKER_BUILDKIT=1 docker build -t ciaranwelsh/libomexmeta-build:latest .

Push to dockerhub

docker push ciaranwelsh/libomexmeta-build:latest

3

https://stackoverflow.com/questions/35000484/how-to-tag-a-docker-container

CiaransLabBook, Release v0.0.1

4 Chapter 1. Docker

CHAPTER 2

CMake

2.1 Cross platform CMake

https://gitlab.kitware.com/cmake/community/-/wikis/doc/tutorials/How-To-Write-Platform-Checks

Note: cmake is now on pip version 3.17. pip install cmake.

2.2 Copy or install a file

Copy during configuration stage

file(COPY ${LIBXML2_LIBRARY} DESTINATION ${PYSEMSIM_DIR})

Copy at install time

install(FILES ${LIBXML2_LIBRARY}
DESTINATION ${PYSEMSIM_DIR})

2.3 API Control

We should consider both what IS in our API and what isn’t. Public header files are okay, but its possible for develops
to still use things you don’t want them to. Instead we can use symbol visibility. Heres a class

class MyGenerator {
public:

int nextValue();
};

With visual studio DLLs, this class would be hidden by default. However, on GCC and Clang, this class is visible by
default.

5

https://gitlab.kitware.com/cmake/community/-/wikis/doc/tutorials/How-To-Write-Platform-Checks

CiaransLabBook, Release v0.0.1

On visual studio _declspec you use __declspec(export) to change visibility from hidden to visible.

Watch this video: https://www.youtube.com/watch?v=m0DwB4OvDXk And make notes here!.

6 Chapter 2. CMake

https://www.youtube.com/watch?v=m0DwB4OvDXk

CHAPTER 3

Git

3.1 Submodule

Update submodules

git submodule update --init --recursive

7

CiaransLabBook, Release v0.0.1

8 Chapter 3. Git

CHAPTER 4

Linux

4.1 Find a library on the system

There seems to be multiple ways to do this, and sometimes one command works over another, not sure why.

$ ldconfig -p | grep "name-of-lib"

$ dpkg -L "name-of-lib"

Requires installing apt-file

$ apt-file search "name-of-lib

ldd - print shared object dependencies. Very useful for debugging missing shared libraries.

$ ldd $(which curl)

Can also try grep with ls -R

$ ls -R | grep file

Then there is find

$ find . -name "*sql*"

9

CiaransLabBook, Release v0.0.1

10 Chapter 4. Linux

CHAPTER 5

Building on linux

5.1 Linking static libraries into shared

When passing arguments to the linker you need to ensure you use the -Wl,–whole-archive and -Wl,–no-whole-archive
option. Wrap these around static libraries that you are tyring to pull into a shared library.

-Wl,--whole-archive
-lxml2
-Wl,--no-whole-archive

This is necessary to tell the linker to pull all the functions from the library into the shared library you are building.
Otherwise, only some will be pulled in and you will get a linker error.

It seems there is also another way here

Use -l: instead of -l. For example -l:libXYZ.a to link with libXYZ.a. Notice the lib written out, as opposed to -lXYZ
which would auto expand to libXYZ.

Note, these commands can be embedded into a CMake script by passing to TARGET_LINK_LIBRARIES

TARGET_LINK_LIBRARIES(target SHARED -W,l--whole-archive l:xml2 -Wl,no-whole-archive)

5.2 Inspecting broken builds

List all the shared object libraries that libx depends on

ldd libx.so

List the symbols in a library, along with their status (found, undefined etc.)

nm libx.so

Use the -D option to inspect dynamic symbols only

11

https://stackoverflow.com/questions/6578484/telling-gcc-directly-to-link-a-library-statically

CiaransLabBook, Release v0.0.1

nm libx.so

Pipe output of nm into grep to search for specific function

nm libx.so | grep somefunction

You can examine the Rpath on Linux thus:

readelf -d libsemsim.so

12 Chapter 5. Building on linux

CHAPTER 6

Windows

6.1 What is the difference between msys and mingw?

Shamelessly stolen from

MinGW doesn’t provide a linux-like environment, that is MSYS(2) and/or Cygwin

Cygwin is an attempt to create a complete UNIX/POSIX environment on Windows. MinGW is a C/C++ compiler
suite which allows you to create Windows executables - you only need the normal MSVC runtimes, which are part of
any normal Microsoft Windows installation.

MinGW provides headers and libraries so that GCC (a compiler suite, not just a “unix/linux compiler”) can be built
and used against the Windows C runtime.

MSYS is a fork of Cygwin (msys.dll is a fork of cygwin.dll) cygwyn gcc + cygwin environment defaults to producing
binaries linked to the (GPL) cygwin dll (or cygwin1.dll???) mingw + msys defaults to producing binaries linked to the
platform C lib.

MinGW: It does not have a Unix emulation layer like Cygwin, but as a result your application needs to specifically be
programmed to be able to run in Windows,

MinGW forked from version 1.3.3 of Cygwin

Unlike Cygwin, MinGW does not require a compatibility layer DLL and thus programs do not need to be distributed
with source code.

This means, other than Cygwin, MinGW does not attempt to offer a complete POSIX layer on top of Windows, but on
the other hand it does not require you to link with a special compatibility library.

Cygwin comes with the MingW libaries and headers and you can compile without linking to the cygwin1.dll by using
-mno-cygwin flag with gcc. I greatly prefer this to using plain MingW and MSYS. (This does not work any more
with cygwin 1.7.6. gcc: The -mno-cygwin flag has been removed; use a mingw-targeted cross-compiler.)

MSYS is a collection of GNU utilities such as bash, make, gawk and grep to allow building of applications and
programs which depend on traditionally UNIX tools to be present. It is intended to supplement MinGW and the
deficiencies of the cmd shell.

13

https://gist.github.com/ReneNyffenegger/a8e9aa59166760c5550f993857ee437d

CiaransLabBook, Release v0.0.1

An example would be building a library that uses the autotools build system. Users will typically run “./configure”
then “make” to build it. The configure shell script requires a shell script interpreter which is not present on Windows
systems, but provided by MSYS.

A common misunderstanding is MSYS is “UNIX on Windows”, MSYS by itself does not contain a compiler or a C
library, therefore does not give the ability to magically port UNIX programs over to Windows nor does it provide any
UNIX specific functionality like case-sensitive filenames. Users looking for such functionality should look to Cygwin
or Microsoft’s Interix instead.

MSYS2 uses Pacman (of Arch Linux) to manage its packages and comes with three different package repositories: -
msys2: Containing MSYS2-dependent software - mingw64: Containing 64-bit native Windows software (compiled
with mingw-w64 x86_64 toolchain) - mingw32: Containing 32-bit native Windows software (compiled with mingw-
w64 i686 toolchain)

Cygwin provides a runtime library called cygwin1.dll that provides the POSIX compatibility layer where necessary.
The MSYS2 variant of this library is called msys-2.0.dll and includes the following changes to support using native
Windows programs: 1) Automatic path mangling of command line arguments and environment variables to Windows
form on the fly.

MSYS is a fork of an old Cygwin version with a number of tweaks aimed at improved Windows integration, whereby
the automatic POSIX path translation when invoking native Windows programs is arguably the most significant.

6.2 DLLs

Lots of information here is from watching a lecture on YouTube

6.2.1 Explicit Linking

Creating a DLL and loading functions from it

Here’s a little library that can be compiled as a dll:

// Hello.cpp
extern "C" char const * __cdecl GetGreeting()

{
return "Hello, C++ Programmers!";

}

You can compile this using visual studio developer command prompt. The /c flag tells cl only to compile and not also
link Hello.cpp

> cl.exe /c Hello.cpp

We have just created Hello.obj. Now we can link into a dll:

> link.exe Hello.obj /DLL /NOENTRY /EXPORT:GetGreeting

The DLL flag specifies to create a DLL. The NOENTRY flag tells the linker that the dll does not have an entry point
and the /EXPORT:GetGreeting tells the linker which functions from the DLL are going to be exported into another
library.

Now, since this is a dll, we need another program, the client program to load GetGreeting() and use it.

14 Chapter 6. Windows

https://www.youtube.com/watch?v=JPQWQfDhICA

CiaransLabBook, Release v0.0.1

// PrintGreeting.cpp
#include <stdio.h>
#include <Windows.h>

int main(){
HMODULE const HelloDll = LoadLibraryExW(L"test.dll", nullptr, 0);

/*
* GetGreetingType is a function pointer for the type we want to load from Hello.

→˓dll

*/
using GetGreetingType = char const* (__cdecl*)();

// then we load get greeting, casting to the type we loaded.
GetGreetingType const GetGreeting = reinterpret_cast<GetGreetingType>(

GetProcAddress(
HelloDll, "GetGreeting"));

puts(GetGreeting());

FreeLibrary(HelloDll);
}

We can compile, link and run this program:

cl PrintGreeting.cpp
.\PrintGreeting.exe

Which prints out:

Using dumpbin.exe

Dumpbin is a program for parsing windows binaries. Note, on windows you can you “/” or “-” to indicate that what
follows is an option. Additionally, the commands are case insensitive.

There are a bunch of headers or metadata inside the dll that can be interrogated using:

DLL Headers

dumpbin /HEADERS Hello.

DLLs have a predefined structure. First, a bunch of header sections follewed by a number of sections, which contain
actual code, data and resources in the dll.

The section headers told us where to find the data in the file. We can look at whats actually inside of a section using
the -rawdata flag.

DLL Raw data

dumpbin -rawdata -section:.text Hello.dll

So it contains some bytes. We can also disassemble the bytes:

6.2. DLLs 15

CiaransLabBook, Release v0.0.1

Disassembley

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>
→˓dumpbin /disasm -section:.text Hello.dll
Microsoft (R) COFF/PE Dumper Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file Hello.dll

File Type: DLL

SECTION HEADER #1
.text name

A virtual size
1000 virtual address (10001000 to 10001009)
200 size of raw data
400 file pointer to raw data (00000400 to 000005FF)

0 file pointer to relocation table
0 file pointer to line numbers
0 number of relocations
0 number of line numbers

60000020 flags
Code
Execute Read

10001000: 55 push ebp
10001001: 8B EC mov ebp,esp
10001003: B8 00 20 00 10 mov eax,10002000h
10001008: 5D pop ebp
10001009: C3 ret

Summary

1000 .text

RData

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>
→˓dumpbin /rawdata -section:.rdata test.dll
Microsoft (R) COFF/PE Dumper Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file test.dll

File Type: DLL

SECTION HEADER #2
.rdata name

D8 virtual size
2000 virtual address (10002000 to 100020D7)
200 size of raw data
600 file pointer to raw data (00000600 to 000007FF)

0 file pointer to relocation table
0 file pointer to line numbers

(continues on next page)

16 Chapter 6. Windows

CiaransLabBook, Release v0.0.1

(continued from previous page)

0 number of relocations
0 number of line numbers

40000040 flags
Initialized Data
Read Only

RAW DATA #2
10002000: 48 65 6C 6C 6F 2C 20 43 2B 2B 20 50 72 6F 67 72 Hello, C++ Progr
10002010: 61 6D 6D 65 72 73 21 00 00 00 00 00 3B 0A 20 5F ammers!.....;. _
10002020: 00 00 00 00 0D 00 00 00 50 00 00 00 88 20 00 00P.... ..
10002030: 88 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00
10002040: 00 00 00 00 FF FF FF FF 00 00 00 00 72 20 00 00ÿÿÿÿ....r ..
10002050: 01 00 00 00 01 00 00 00 01 00 00 00 68 20 00 00h ..
10002060: 6C 20 00 00 70 20 00 00 00 10 00 00 7B 20 00 00 l ..p{ ..
10002070: 00 00 74 65 73 74 2E 64 6C 6C 00 47 65 74 47 72 ..test.dll.GetGr
10002080: 65 65 74 69 6E 67 00 00 00 00 00 00 00 10 00 00 eeting..........
10002090: 0A 00 00 00 2E 74 65 78 74 24 6D 6E 00 00 00 00text$mn....
100020A0: 00 20 00 00 40 00 00 00 2E 72 64 61 74 61 00 00 . ..@....rdata..
100020B0: 40 20 00 00 48 00 00 00 2E 65 64 61 74 61 00 00 @ ..H....edata..
100020C0: 88 20 00 00 50 00 00 00 2E 72 64 61 74 61 24 7A . ..P....rdata$z
100020D0: 7A 7A 64 62 67 00 00 00 zzdbg...

Summary

1000 .rdata

Note that we can see where our string is stored. Moreover, the locations of the Export and Debug directories are also
located in here.

DLL Exports

The export directory defines the public service of the dll, all the things that other dlls or exes can use from this dll. We
can look at these with:

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>
→˓dumpbin -exports test.dll
Microsoft (R) COFF/PE Dumper Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file test.dll

File Type: DLL

Section contains the following exports for test.dll

00000000 characteristics
FFFFFFFF time date stamp

0.00 version
1 ordinal base
1 number of functions
1 number of names

ordinal hint RVA name

(continues on next page)

6.2. DLLs 17

CiaransLabBook, Release v0.0.1

(continued from previous page)

1 0 00001000 GetGreeting

Summary

1000 .rdata
1000 .reloc
1000 .text

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>

To reiterate, this command lists the functions that other dlls can import into their program for use using LoadLibrary

DLL Depencencies

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>
→˓dumpbin -dependents PrintGreeting.exe
Microsoft (R) COFF/PE Dumper Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file PrintGreeting.exe

File Type: EXECUTABLE IMAGE

Image has the following dependencies:

KERNEL32.dll

Summary

2000 .data
6000 .rdata
1000 .reloc
D000 .text

DLL Imports

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>
→˓dumpbin -imports PrintGreeting.exe
Microsoft (R) COFF/PE Dumper Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file PrintGreeting.exe

File Type: EXECUTABLE IMAGE

Section contains the following imports:

KERNEL32.dll
40E000 Import Address Table
4133AC Import Name Table

0 time date stamp

(continues on next page)

18 Chapter 6. Windows

CiaransLabBook, Release v0.0.1

(continued from previous page)

0 Index of first forwarder reference

1AB FreeLibrary
2AE GetProcAddress
3C3 LoadLibraryExW
44D QueryPerformanceCounter
218 GetCurrentProcessId
21C GetCurrentThreadId
2E9 GetSystemTimeAsFileTime
363 InitializeSListHead
37F IsDebuggerPresent
5AD UnhandledExceptionFilter
56D SetUnhandledExceptionFilter
2D0 GetStartupInfoW
386 IsProcessorFeaturePresent
278 GetModuleHandleW
217 GetCurrentProcess
58C TerminateProcess
611 WriteConsoleW
4D3 RtlUnwind
261 GetLastError
532 SetLastError
131 EnterCriticalSection
3BD LeaveCriticalSection
110 DeleteCriticalSection
35F InitializeCriticalSectionAndSpinCount
59E TlsAlloc
5A0 TlsGetValue
5A1 TlsSetValue
59F TlsFree
462 RaiseException
2D2 GetStdHandle
612 WriteFile
274 GetModuleFileNameW
15E ExitProcess
277 GetModuleHandleExW
1D6 GetCommandLineA
1D7 GetCommandLineW
24E GetFileType
345 HeapAlloc
349 HeapFree
175 FindClose
17B FindFirstFileExW
18C FindNextFileW
38B IsValidCodePage
1B2 GetACP
297 GetOEMCP
1C1 GetCPInfo
3EF MultiByteToWideChar
5FE WideCharToMultiByte
237 GetEnvironmentStringsW
1AA FreeEnvironmentStringsW
514 SetEnvironmentVariableW
54A SetStdHandle
2D7 GetStringTypeW
9B CompareStringW

3B1 LCMapStringW
(continues on next page)

6.2. DLLs 19

CiaransLabBook, Release v0.0.1

(continued from previous page)

2B4 GetProcessHeap
24C GetFileSizeEx
523 SetFilePointerEx
1EA GetConsoleCP
1FC GetConsoleMode
34E HeapSize
34C HeapReAlloc
19F FlushFileBuffers
86 CloseHandle
CB CreateFileW

109 DecodePointer

Summary

2000 .data
6000 .rdata
1000 .reloc
D000 .text

6.2.2 Implicit Linking

Before, we use explicit linking to LoadLibrary and GetProcAddress for specific functions from the library we were
using. Now we look at implicit linking.

Where explicit linking means you physically load the library in your program, with implicit linking you are providing
a *.lib file, which contains the information needed for a program to implicitely link. Remember that this .lib is not the
same as that produced when building a static library. Instead, it is a stub file that gets used to create function pointers
automatically.

We want this to work:

// PrintGreetingImplicityLinking.cpp
#include <stdio.h>

extern "C" const char* __cdecl GetGreeting();

int main(){
puts(GetGreeting());

}

You can use

dumpbin -all Hello.lib

To look in detail at the *lib file. It gives us information such as which functions are available for linking, where they
live etc.

We can compile and link:

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>cl -
→˓c PrintGreetingImplicityLinking.cpp
Microsoft (R) C/C++ Optimizing Compiler Version 19.26.28806 for x86
Copyright (C) Microsoft Corporation. All rights reserved.

PrintGreetingImplicityLinking.cpp

(continues on next page)

20 Chapter 6. Windows

CiaransLabBook, Release v0.0.1

(continued from previous page)

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>
→˓link PrintGreetingImplicityLinking.obj Hello.lib
Microsoft (R) Incremental Linker Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>
→˓PrintGreetingImplicityLinking.exe
Hello, C++ Programmers!

We can look at its dependents:

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>
→˓dumpbin /dependents PrintGreetingImplicityLinking.exe
Microsoft (R) COFF/PE Dumper Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file PrintGreetingImplicityLinking.exe

File Type: EXECUTABLE IMAGE

Image has the following dependencies:

Hello.dll
KERNEL32.dll

Summary

2000 .data
6000 .rdata
1000 .reloc
D000 .text

Relealing that our PrintGreetingImplicitlLinking.exe depends on both Hello.dll and KERNEL32.dll, where our ex-
plicitely linked program only depended on KERNEL32.dll.

We can check our imports:

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>
→˓dumpbin /imports PrintGreetingImplicityLinking.exe
Microsoft (R) COFF/PE Dumper Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file PrintGreetingImplicityLinking.exe

File Type: EXECUTABLE IMAGE

Section contains the following imports:

Hello.dll
40E000 Import Address Table
4133A0 Import Name Table

0 time date stamp
0 Index of first forwarder reference

(continues on next page)

6.2. DLLs 21

CiaransLabBook, Release v0.0.1

(continued from previous page)

0 GetGreeting

KERNEL32.dll
40E008 Import Address Table
4133A8 Import Name Table

0 time date stamp
0 Index of first forwarder reference

44D QueryPerformanceCounter
218 GetCurrentProcessId
21C GetCurrentThreadId
2E9 GetSystemTimeAsFileTime
363 InitializeSListHead
37F IsDebuggerPresent
5AD UnhandledExceptionFilter
56D SetUnhandledExceptionFilter
2D0 GetStartupInfoW
386 IsProcessorFeaturePresent
278 GetModuleHandleW
217 GetCurrentProcess
58C TerminateProcess
611 WriteConsoleW
4D3 RtlUnwind
261 GetLastError
532 SetLastError
131 EnterCriticalSection
3BD LeaveCriticalSection
110 DeleteCriticalSection
35F InitializeCriticalSectionAndSpinCount
59E TlsAlloc
5A0 TlsGetValue
5A1 TlsSetValue
59F TlsFree
1AB FreeLibrary
2AE GetProcAddress
3C3 LoadLibraryExW
462 RaiseException
2D2 GetStdHandle
612 WriteFile
274 GetModuleFileNameW
15E ExitProcess
277 GetModuleHandleExW
1D6 GetCommandLineA
1D7 GetCommandLineW
24E GetFileType
345 HeapAlloc
349 HeapFree
175 FindClose
17B FindFirstFileExW
18C FindNextFileW
38B IsValidCodePage
1B2 GetACP
297 GetOEMCP
1C1 GetCPInfo
3EF MultiByteToWideChar
5FE WideCharToMultiByte
237 GetEnvironmentStringsW

(continues on next page)

22 Chapter 6. Windows

CiaransLabBook, Release v0.0.1

(continued from previous page)

1AA FreeEnvironmentStringsW
514 SetEnvironmentVariableW
54A SetStdHandle
2D7 GetStringTypeW
9B CompareStringW

3B1 LCMapStringW
2B4 GetProcessHeap
24C GetFileSizeEx
523 SetFilePointerEx
1EA GetConsoleCP
1FC GetConsoleMode
34E HeapSize
34C HeapReAlloc
19F FlushFileBuffers
86 CloseHandle
CB CreateFileW

109 DecodePointer

Summary

2000 .data
6000 .rdata
1000 .reloc
D000 .text

Which indicates that we import our GetGreeting function from Hello.lib/Hello.dll.

6.2.3 Exporting from a DLL

We create a new example to work with.

// Numbers.cpp
extern "C" int GetOne() {return 1;}
extern "C" int GetTwo() {return 2;}
extern "C" int GetThree() {return 3;}

Lets compile:

cl -c Numbers.cpp

We have 4 options for exporting these function to make them available for

Export flag command line

So far we’ve been using Export.

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>
→˓link Numbers.obj /NOENTRY /DLL /EXPORT:GetOne /EXPORT:GetTwo /EXPORT:GetThree
Microsoft (R) Incremental Linker Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

Creating library Numbers.lib and object Numbers.exp

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>
→˓dumpbin /exports Numbers.dll

(continues on next page)

6.2. DLLs 23

CiaransLabBook, Release v0.0.1

(continued from previous page)

Microsoft (R) COFF/PE Dumper Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file Numbers.dll

File Type: DLL

Section contains the following exports for Numbers.dll

00000000 characteristics
FFFFFFFF time date stamp

0.00 version
1 ordinal base
3 number of functions
3 number of names

ordinal hint RVA name

1 0 00001000 GetOne
2 1 00001020 GetThree
3 2 00001010 GetTwo

Summary

1000 .rdata
1000 .text

We can also export under alias’s.

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>
→˓link Numbers.obj /NOENTRY /DLL /EXPORT:GetOne /EXPORT:GetTwo /EXPORT:GetThree /
→˓EXPORT:GetOnePlusTwo=GetThree
Microsoft (R) Incremental Linker Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

Creating library Numbers.lib and object Numbers.exp

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>
→˓dumpbin /exports Numbers.dll
Microsoft (R) COFF/PE Dumper Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file Numbers.dll

File Type: DLL

Section contains the following exports for Numbers.dll

00000000 characteristics
FFFFFFFF time date stamp

0.00 version
1 ordinal base
4 number of functions
4 number of names

(continues on next page)

24 Chapter 6. Windows

CiaransLabBook, Release v0.0.1

(continued from previous page)

ordinal hint RVA name

1 0 00001000 GetOne
2 1 00001020 GetOnePlusTwo
3 2 00001020 GetThree
4 3 00001010 GetTwo

Summary

1000 .rdata
1000 .text

Note: GetOnePlusTwo and GetThree are the same function with a different name. They are at the same memory
address.

Using a def file

In a new file, Numbers.def, put the following:

LIBRARY Numbers
EXPORTS

GetOne
GetTwo PRIVATE
GetOnePlusTwo=GetThree

Now we can link with :

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>
→˓link Numbers.obj /DLL /NOENTRY /DEF:Numbers.def
Microsoft (R) Incremental Linker Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

Creating library Numbers.lib and object Numbers.exp

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>
→˓dumpbin /exports Numbers.lib
Microsoft (R) COFF/PE Dumper Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file Numbers.lib

File Type: LIBRARY

Exports

ordinal name

_GetOne
_GetOnePlusTwo

Summary

(continues on next page)

6.2. DLLs 25

CiaransLabBook, Release v0.0.1

(continued from previous page)

C3 .debug$S
14 .idata$2
14 .idata$3
4 .idata$4
4 .idata$5
C .idata$6

Inside your code

Another option is to declare exports inside your code. Take a look at Numbers2.cpp.

extern "C" __declspec(dllexport) int GetOne() { return 1;}
extern "C" __declspec(dllexport) int GetTwo() { return 2;}
extern "C" __declspec(dllexport) int GetThree() { return 3;}

We use __declspec(export) to do that same as what we were previously doing on the command line. The

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>cl -
→˓c Numbers2.cpp
Microsoft (R) C/C++ Optimizing Compiler Version 19.26.28806 for x86
Copyright (C) Microsoft Corporation. All rights reserved.

Numbers2.cpp

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>
→˓dumpbin /EXPORTS Numbers2.dll
Microsoft (R) COFF/PE Dumper Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file Numbers2.dll

File Type: DLL

Section contains the following exports for Numbers2.dll

00000000 characteristics
FFFFFFFF time date stamp

0.00 version
1 ordinal base
3 number of functions
3 number of names

ordinal hint RVA name

1 0 00001000 GetOne
2 1 00001020 GetThree
3 2 00001010 GetTwo

Summary

1000 .rdata
1000 .text

Declspec export merely tells the compiler to pretend that it got the exports from the command line. They do the same
job but its more convenient.

26 Chapter 6. Windows

CiaransLabBook, Release v0.0.1

Pragma

Pragma directives can also be used to achieve the same, though this is not often used. So Numbers3.cpp looks like
this.

6.2.4 What happens when we load a DLL?

There are 5 steps, basically:

1. Find the dll (Hello.dll)

2. Map Hello.dll into memory

3. Load any DLLs on which Hello.dll depends

4. Bind imports from DLLs on which Hello.dll depends

5. Call the entry point for Hello.dll to let it initialize itself.

Find the DLL

When we do

HMODULE HelloDll = LoadLibraryExW(L"Hello.dll", nullptr, o);

How does the loader know where to find Hello.dll?

If we passed an absolute path to LoadLibraryExW, this is easy as if its there it’ll be loaded, if not it’ll fail. Note, you
can load the same library into the same script from two different drives (C Vs D), but not two libraries with the same
name from the same drive.

If its not an absolute path then the first thing that happens is the loader will look to see whether the dll is a system dll.
These are always loaded from the same place for security. These are well known to the OS and the same version of
the library will always be loaded. For instance, kernel32.dll or ole32.dll. This mechanism prevents dll hijacking.

If the dll is not in this small list of libraries, the loader will continue with the search process. This is the search process:

1. The directory from which the application is loaded

2. The system directoy (C:WindowsSystem32or C:WindowsSysWOW64)

3. The 16-bit system directory (C:WindowsSystem)

4. The Windows Directory (C:Windows)

5. The current directory

6. The directories listed in %PATH% environment variable.

Once found, the search stops.

This process is highly customizable. For instance:

1. DLL Redirection (.local)

2. Side-by-size components

3. add to %PATH%

4. AddDllDirectory

5. LoadLibraryEx Flags

Do some googling on these.

6.2. DLLs 27

CiaransLabBook, Release v0.0.1

Map the DLL into Memory

The loader needs to

1. Open the DLL file and read the image size

2. Allocate a contiguous, page aligned block of memory of that size

3. Copy the contents of each section into the appropriate area of that block of memory

Relocation

DLLs have a preferred base address. If the dll does not get loaded into its preferred base address then the pointers in
the dll will be pointing to random slots of memory. Relocation fixes this.

Load Dependencies and Bind Imports

For each DLL dependency:

1. load the DLL

2. Get the required imports to fill out the function pointer tables.

Initialize the DLL

DLLs have an optional entry point where it can do some initialization. Conventially this is called DllMain but can be
called anything.

Here is the signature.

BOOL WINAPI DllMain(HINSTANCE instance, DWORD reason, LPVOID reserved);

Where:

• instance = the DLL handle returned from LoadLibrary

• reason = indication of why the loaded is calling the entry point

– DLL_PROCESS_ATTACH = Called once, when DLL is loaded

– DLL_PROCESS_DETACH = Called once, when DLL is unloaded

– DLL_THREAD_ATTACH = Called each time a thread starts running

– DLL_THREAD_DETACH = Called each time a thread stops running

• reserve = more information for process attach or detach.

Returns True or False depending on load success.

Calls to DllMain are syncronized by a gloval lock called the Loader Lock. So only 1 thread can be initializing a dll at
one time.

Debugging DLL Load Failures

What if Hello.dll did not exist? Then you would get an error. How do you debug this?

One way is to use a program called gflags.

Here I deleted Hello.dll. Now when we run a program that uses Hello.dll we get and error.

28 Chapter 6. Windows

CiaransLabBook, Release v0.0.1

Importing

We’ve already seen __declspec(dllexport) which is used inside our source files to allow other programs access to the
public interface. __declspec(dllimport) also exists, and this is used inside programs that use a dll.

For instance, see NumbersCaller.cpp.

The __declspec(dllimport) statement tells the compiler than this function is going to be imported. This is more efficient
because the compiler can do things a little differently.

Exporting Data

You can export variables as well as functions. When you do this you need to use __declspec(dllimport).

Exporting C++ classes

This is possible. When you use __declspec(dllexport) on a class, rather than a function, all the members of the class
get exported.

However, You are NOT recommended to do exports on classes. You are too dependent on a compiler. This will be
hard to debug and will probably do wrong.

6.3 Powershell

Open windows explorer from this directory. ii is short for Invoke-Item

ii .

6.3. Powershell 29

CiaransLabBook, Release v0.0.1

30 Chapter 6. Windows

CHAPTER 7

Travis

Some useful links:

referece: https://config.travis-ci.com/ syntax schema: http://json.schemastore.org/travis some commands: https:
//devhints.io/travis https://github.com/travis-ci/docs-travis-ci-com/issues/2004

31

https://config.travis-ci.com/
http://json.schemastore.org/travis
https://devhints.io/travis
https://devhints.io/travis
https://github.com/travis-ci/docs-travis-ci-com/issues/2004

CiaransLabBook, Release v0.0.1

32 Chapter 7. Travis

CHAPTER 8

Random Notes

33

CiaransLabBook, Release v0.0.1

34 Chapter 8. Random Notes

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

35

	Docker
	CMake
	Git
	Linux
	Building on linux
	Windows
	Travis
	Random Notes
	Indices and tables

