

 sphinx-quickstart on Tue Jul 28 12:47:19 2020.
You can adapt this file completely to your liking, but it should at least
contain the root toctree directive.

Welcome to CiaransLabBook’s documentation!

I keep looking up the same commands over and over again, so here I’ll denote some useful ones.

	Docker

	CMake

	Git

	Linux

	Building on linux

	Windows

	Travis

	Random Notes

Indices and tables

	Index

	Module Index

	Search Page

Docker

Commands

Turn off all containers

docker container stop $(docker container ls -aq)

using a filter

docker container prune --filter "until=12h"

A great resource on explaining the docker basics [https://stackoverflow.com/questions/35000484/how-to-tag-a-docker-container]

Docker build

DOCKER_BUILDKIT=1 docker build -t ciaranwelsh/libomexmeta-build:latest .

Push to dockerhub

docker push ciaranwelsh/libomexmeta-build:latest

CMake

Cross platform CMake

https://gitlab.kitware.com/cmake/community/-/wikis/doc/tutorials/How-To-Write-Platform-Checks

Note: cmake is now on pip version 3.17. pip install cmake.

Copy or install a file

Copy during configuration stage

file(COPY ${LIBXML2_LIBRARY} DESTINATION ${PYSEMSIM_DIR})

Copy at install time

install(FILES ${LIBXML2_LIBRARY}
DESTINATION ${PYSEMSIM_DIR})

API Control

We should consider both what IS in our API and what isn’t. Public header files are okay, but its possible
for develops to still use things you don’t want them to. Instead we can use symbol visibility. Heres a class

class MyGenerator {
public:
 int nextValue();
};

With visual studio DLLs, this class would be hidden by default. However, on GCC and Clang, this class
is visible by default.

On visual studio _declspec you use __declspec(export) to change visibility from hidden to visible.

Watch this video: https://www.youtube.com/watch?v=m0DwB4OvDXk
And make notes here!.

Git

Submodule

Update submodules

git submodule update --init --recursive

Linux

Find a library on the system

There seems to be multiple ways to do this, and sometimes one command works over another, not sure why.

$ ldconfig -p | grep "name-of-lib"

$ dpkg -L "name-of-lib"

Requires installing apt-file

$ apt-file search "name-of-lib

ldd - print shared object dependencies. Very useful for debugging missing shared libraries.

$ ldd $(which curl)

Can also try grep with ls -R

$ ls -R | grep file

Then there is find

$ find . -name "*sql*"

Building on linux

Linking static libraries into shared

When passing arguments to the linker you need to ensure you use the -Wl,–whole-archive and
-Wl,–no-whole-archive option. Wrap these around static libraries that you are tyring
to pull into a shared library.

-Wl,--whole-archive
-lxml2
-Wl,--no-whole-archive

This is necessary to tell the linker to pull all the functions from the library into the shared library you are
building. Otherwise, only some will be pulled in and you will get a linker error.

It seems there is also another way here [https://stackoverflow.com/questions/6578484/telling-gcc-directly-to-link-a-library-statically]

Use -l: instead of -l. For example -l:libXYZ.a to link with libXYZ.a. Notice the lib written out, as opposed to
-lXYZ which would auto expand to libXYZ.

Note, these commands can be embedded into a CMake script by passing to TARGET_LINK_LIBRARIES

TARGET_LINK_LIBRARIES(target SHARED -W,l--whole-archive l:xml2 -Wl,no-whole-archive)

Inspecting broken builds

List all the shared object libraries that libx depends on

ldd libx.so

List the symbols in a library, along with their status (found, undefined etc.)

nm libx.so

Use the -D option to inspect dynamic symbols only

nm libx.so

Pipe output of nm into grep to search for specific function

nm libx.so | grep somefunction

You can examine the Rpath on Linux thus:

readelf -d libsemsim.so

Windows

What is the difference between msys and mingw?

Shamelessly stolen from [https://gist.github.com/ReneNyffenegger/a8e9aa59166760c5550f993857ee437d]

MinGW doesn’t provide a linux-like environment, that is MSYS(2) and/or Cygwin

Cygwin is an attempt to create a complete UNIX/POSIX environment on Windows.
MinGW is a C/C++ compiler suite which allows you to create Windows executables - you only
need the normal MSVC runtimes, which are part of any normal Microsoft Windows installation.

MinGW provides headers and libraries so that GCC (a compiler suite,
not just a “unix/linux compiler”) can be built and used against the Windows C runtime.

MSYS is a fork of Cygwin (msys.dll is a fork of cygwin.dll)
cygwyn gcc + cygwin environment defaults to producing
binaries linked to the (GPL) cygwin dll (or cygwin1.dll???)
mingw + msys defaults to producing binaries linked to the platform C lib.

MinGW: It does not have a Unix emulation layer like Cygwin, but as a
result your application needs to specifically be programmed to be able to run in Windows,

MinGW forked from version 1.3.3 of Cygwin

Unlike Cygwin, MinGW does not require a compatibility layer DLL and thus programs do not need to be distributed with source code.

This means, other than Cygwin, MinGW does not attempt to offer a complete POSIX layer on top of Windows,
but on the other hand it does not require you to link with a special compatibility library.

Cygwin comes with the MingW libaries and headers and you can compile without linking to the cygwin1.dll by
using -mno-cygwin flag with gcc. I greatly prefer this to using plain MingW and MSYS.
(This does not work any more with cygwin 1.7.6. gcc: The -mno-cygwin flag has been removed; use a mingw-targeted cross-compiler.)

MSYS is a collection of GNU utilities such as bash, make, gawk and grep to allow building of applications and programs
which depend on traditionally UNIX tools to be present.
It is intended to supplement MinGW and the deficiencies of the cmd shell.

An example would be building a library that uses the autotools build system. Users will typically run “./configure” then “make” to build it.
The configure shell script requires a shell script interpreter which is not present on Windows systems, but provided by MSYS.

A common misunderstanding is MSYS is “UNIX on Windows”, MSYS by itself
does not contain a compiler or a C library, therefore does not give the
ability to magically port UNIX programs over to Windows nor does it provide any UNIX specific functionality
like case-sensitive filenames. Users looking for such functionality
should look to Cygwin or Microsoft’s Interix instead.

MSYS2 uses Pacman (of Arch Linux) to manage its packages and comes with three different package repositories:
- msys2: Containing MSYS2-dependent software
- mingw64: Containing 64-bit native Windows software (compiled with mingw-w64 x86_64 toolchain)
- mingw32: Containing 32-bit native Windows software (compiled with mingw-w64 i686 toolchain)

Cygwin provides a runtime library called cygwin1.dll that provides the POSIX compatibility layer
where necessary. The MSYS2 variant of this library
is called msys-2.0.dll and includes the following changes to support using native Windows programs:
1) Automatic path mangling of command line arguments and environment variables to Windows form on the fly.

MSYS is a fork of an old Cygwin version with a number of tweaks
aimed at improved Windows integration, whereby the automatic POSIX path
translation when invoking native Windows programs is arguably the most significant.

DLLs

Lots of information here is from watching a lecture on YouTube [https://www.youtube.com/watch?v=JPQWQfDhICA]

Explicit Linking

Creating a DLL and loading functions from it

Here’s a little library that can be compiled as a dll:

// Hello.cpp
extern "C" char const * __cdecl GetGreeting()
 {
 return "Hello, C++ Programmers!";
 }

You can compile this using visual studio developer command prompt. The /c flag tells cl only to compile and not also link Hello.cpp

> cl.exe /c Hello.cpp

We have just created Hello.obj. Now we can link into a dll:

> link.exe Hello.obj /DLL /NOENTRY /EXPORT:GetGreeting

The DLL flag specifies to create a DLL. The NOENTRY flag tells the linker that the dll
does not have an entry point and the /EXPORT:GetGreeting tells the linker which functions from the DLL
are going to be exported into another library.

Now, since this is a dll, we need another program, the client program to load GetGreeting()
and use it.

// PrintGreeting.cpp
#include <stdio.h>
#include <Windows.h>

int main(){
 HMODULE const HelloDll = LoadLibraryExW(L"test.dll", nullptr, 0);

 /*
 * GetGreetingType is a function pointer for the type we want to load from Hello.dll
 */
 using GetGreetingType = char const* (__cdecl*)();

 // then we load get greeting, casting to the type we loaded.
 GetGreetingType const GetGreeting = reinterpret_cast<GetGreetingType>(
 GetProcAddress(
 HelloDll, "GetGreeting"));

 puts(GetGreeting());

 FreeLibrary(HelloDll);
}

We can compile, link and run this program:

cl PrintGreeting.cpp
.\PrintGreeting.exe

Which prints out:

Using dumpbin.exe

Dumpbin is a program for parsing windows binaries. Note, on windows you can
you “/” or “-” to indicate that what follows is an option. Additionally,
the commands are case insensitive.

There are a bunch of headers or metadata inside the dll that can be
interrogated using:

DLL Headers

dumpbin /HEADERS Hello.

DLLs have a predefined structure. First, a bunch of header sections follewed by
a number of sections, which contain actual code, data and resources in the dll.

The section headers told us where to find the data in the file. We can look at
whats actually inside of a section using the -rawdata flag.

DLL Raw data

dumpbin -rawdata -section:.text Hello.dll

So it contains some bytes. We can also disassemble the bytes:

Disassembley

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>dumpbin /disasm -section:.text Hello.dll
Microsoft (R) COFF/PE Dumper Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file Hello.dll

File Type: DLL

SECTION HEADER #1
 .text name
 A virtual size
 1000 virtual address (10001000 to 10001009)
 200 size of raw data
 400 file pointer to raw data (00000400 to 000005FF)
 0 file pointer to relocation table
 0 file pointer to line numbers
 0 number of relocations
 0 number of line numbers
60000020 flags
 Code
 Execute Read

 10001000: 55 push ebp
 10001001: 8B EC mov ebp,esp
 10001003: B8 00 20 00 10 mov eax,10002000h
 10001008: 5D pop ebp
 10001009: C3 ret

 Summary

 1000 .text

RData

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>dumpbin /rawdata -section:.rdata test.dll
Microsoft (R) COFF/PE Dumper Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file test.dll

File Type: DLL

SECTION HEADER #2
 .rdata name
 D8 virtual size
 2000 virtual address (10002000 to 100020D7)
 200 size of raw data
 600 file pointer to raw data (00000600 to 000007FF)
 0 file pointer to relocation table
 0 file pointer to line numbers
 0 number of relocations
 0 number of line numbers
40000040 flags
 Initialized Data
 Read Only

RAW DATA #2
 10002000: 48 65 6C 6C 6F 2C 20 43 2B 2B 20 50 72 6F 67 72 Hello, C++ Progr
 10002010: 61 6D 6D 65 72 73 21 00 00 00 00 00 3B 0A 20 5F ammers!.....;. _
 10002020: 00 00 00 00 0D 00 00 00 50 00 00 00 88 20 00 00 P.... ..
 10002030: 88 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 10002040: 00 00 00 00 FF FF FF FF 00 00 00 00 72 20 00 00 ÿÿÿÿ....r ..
 10002050: 01 00 00 00 01 00 00 00 01 00 00 00 68 20 00 00 h ..
 10002060: 6C 20 00 00 70 20 00 00 00 10 00 00 7B 20 00 00 l ..p{ ..
 10002070: 00 00 74 65 73 74 2E 64 6C 6C 00 47 65 74 47 72 ..test.dll.GetGr
 10002080: 65 65 74 69 6E 67 00 00 00 00 00 00 00 10 00 00 eeting..........
 10002090: 0A 00 00 00 2E 74 65 78 74 24 6D 6E 00 00 00 00 text$mn....
 100020A0: 00 20 00 00 40 00 00 00 2E 72 64 61 74 61 00 00 . ..@....rdata..
 100020B0: 40 20 00 00 48 00 00 00 2E 65 64 61 74 61 00 00 @ ..H....edata..
 100020C0: 88 20 00 00 50 00 00 00 2E 72 64 61 74 61 24 7A . ..P....rdata$z
 100020D0: 7A 7A 64 62 67 00 00 00 zzdbg...

 Summary

 1000 .rdata

Note that we can see where our string is stored. Moreover, the locations of the Export
and Debug directories are also located in here.

DLL Exports

The export directory defines the public service of the dll, all the things
that other dlls or exes can use from this dll. We can look at these with:

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>dumpbin -exports test.dll
Microsoft (R) COFF/PE Dumper Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file test.dll

File Type: DLL

 Section contains the following exports for test.dll

 00000000 characteristics
 FFFFFFFF time date stamp
 0.00 version
 1 ordinal base
 1 number of functions
 1 number of names

 ordinal hint RVA name

 1 0 00001000 GetGreeting

 Summary

 1000 .rdata
 1000 .reloc
 1000 .text

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>

To reiterate, this command lists the functions that other dlls can import into
their program for use using LoadLibrary

DLL Depencencies

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test> dumpbin -dependents PrintGreeting.exe
Microsoft (R) COFF/PE Dumper Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file PrintGreeting.exe

File Type: EXECUTABLE IMAGE

 Image has the following dependencies:

 KERNEL32.dll

 Summary

 2000 .data
 6000 .rdata
 1000 .reloc
 D000 .text

DLL Imports

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>dumpbin -imports PrintGreeting.exe
Microsoft (R) COFF/PE Dumper Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file PrintGreeting.exe

File Type: EXECUTABLE IMAGE

 Section contains the following imports:

 KERNEL32.dll
 40E000 Import Address Table
 4133AC Import Name Table
 0 time date stamp
 0 Index of first forwarder reference

 1AB FreeLibrary
 2AE GetProcAddress
 3C3 LoadLibraryExW
 44D QueryPerformanceCounter
 218 GetCurrentProcessId
 21C GetCurrentThreadId
 2E9 GetSystemTimeAsFileTime
 363 InitializeSListHead
 37F IsDebuggerPresent
 5AD UnhandledExceptionFilter
 56D SetUnhandledExceptionFilter
 2D0 GetStartupInfoW
 386 IsProcessorFeaturePresent
 278 GetModuleHandleW
 217 GetCurrentProcess
 58C TerminateProcess
 611 WriteConsoleW
 4D3 RtlUnwind
 261 GetLastError
 532 SetLastError
 131 EnterCriticalSection
 3BD LeaveCriticalSection
 110 DeleteCriticalSection
 35F InitializeCriticalSectionAndSpinCount
 59E TlsAlloc
 5A0 TlsGetValue
 5A1 TlsSetValue
 59F TlsFree
 462 RaiseException
 2D2 GetStdHandle
 612 WriteFile
 274 GetModuleFileNameW
 15E ExitProcess
 277 GetModuleHandleExW
 1D6 GetCommandLineA
 1D7 GetCommandLineW
 24E GetFileType
 345 HeapAlloc
 349 HeapFree
 175 FindClose
 17B FindFirstFileExW
 18C FindNextFileW
 38B IsValidCodePage
 1B2 GetACP
 297 GetOEMCP
 1C1 GetCPInfo
 3EF MultiByteToWideChar
 5FE WideCharToMultiByte
 237 GetEnvironmentStringsW
 1AA FreeEnvironmentStringsW
 514 SetEnvironmentVariableW
 54A SetStdHandle
 2D7 GetStringTypeW
 9B CompareStringW
 3B1 LCMapStringW
 2B4 GetProcessHeap
 24C GetFileSizeEx
 523 SetFilePointerEx
 1EA GetConsoleCP
 1FC GetConsoleMode
 34E HeapSize
 34C HeapReAlloc
 19F FlushFileBuffers
 86 CloseHandle
 CB CreateFileW
 109 DecodePointer

 Summary

 2000 .data
 6000 .rdata
 1000 .reloc
 D000 .text

Implicit Linking

Before, we use explicit linking to LoadLibrary and GetProcAddress
for specific functions from the library we were using. Now we look at implicit
linking.

Where explicit linking means you physically load the library in your program,
with implicit linking you are providing a *.lib file, which contains the
information needed for a program to implicitely link. Remember that this .lib
is not the same as that produced when building a static library. Instead, it
is a stub file that gets used to create function pointers automatically.

We want this to work:

// PrintGreetingImplicityLinking.cpp
#include <stdio.h>

extern "C" const char* __cdecl GetGreeting();

int main(){
 puts(GetGreeting());
}

You can use

dumpbin -all Hello.lib

To look in detail at the *lib file. It gives us information such as
which functions are available for linking, where they live etc.

We can compile and link:

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>cl -c PrintGreetingImplicityLinking.cpp
Microsoft (R) C/C++ Optimizing Compiler Version 19.26.28806 for x86
Copyright (C) Microsoft Corporation. All rights reserved.

PrintGreetingImplicityLinking.cpp

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>link PrintGreetingImplicityLinking.obj Hello.lib
Microsoft (R) Incremental Linker Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>PrintGreetingImplicityLinking.exe
Hello, C++ Programmers!

We can look at its dependents:

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>dumpbin /dependents PrintGreetingImplicityLinking.exe
Microsoft (R) COFF/PE Dumper Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file PrintGreetingImplicityLinking.exe

File Type: EXECUTABLE IMAGE

 Image has the following dependencies:

 Hello.dll
 KERNEL32.dll

 Summary

 2000 .data
 6000 .rdata
 1000 .reloc
 D000 .text

Relealing that our PrintGreetingImplicitlLinking.exe depends on both Hello.dll and
KERNEL32.dll, where our explicitely linked program only depended on KERNEL32.dll.

We can check our imports:

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>dumpbin /imports PrintGreetingImplicityLinking.exe
Microsoft (R) COFF/PE Dumper Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file PrintGreetingImplicityLinking.exe

File Type: EXECUTABLE IMAGE

 Section contains the following imports:

 Hello.dll
 40E000 Import Address Table
 4133A0 Import Name Table
 0 time date stamp
 0 Index of first forwarder reference

 0 GetGreeting

 KERNEL32.dll
 40E008 Import Address Table
 4133A8 Import Name Table
 0 time date stamp
 0 Index of first forwarder reference

 44D QueryPerformanceCounter
 218 GetCurrentProcessId
 21C GetCurrentThreadId
 2E9 GetSystemTimeAsFileTime
 363 InitializeSListHead
 37F IsDebuggerPresent
 5AD UnhandledExceptionFilter
 56D SetUnhandledExceptionFilter
 2D0 GetStartupInfoW
 386 IsProcessorFeaturePresent
 278 GetModuleHandleW
 217 GetCurrentProcess
 58C TerminateProcess
 611 WriteConsoleW
 4D3 RtlUnwind
 261 GetLastError
 532 SetLastError
 131 EnterCriticalSection
 3BD LeaveCriticalSection
 110 DeleteCriticalSection
 35F InitializeCriticalSectionAndSpinCount
 59E TlsAlloc
 5A0 TlsGetValue
 5A1 TlsSetValue
 59F TlsFree
 1AB FreeLibrary
 2AE GetProcAddress
 3C3 LoadLibraryExW
 462 RaiseException
 2D2 GetStdHandle
 612 WriteFile
 274 GetModuleFileNameW
 15E ExitProcess
 277 GetModuleHandleExW
 1D6 GetCommandLineA
 1D7 GetCommandLineW
 24E GetFileType
 345 HeapAlloc
 349 HeapFree
 175 FindClose
 17B FindFirstFileExW
 18C FindNextFileW
 38B IsValidCodePage
 1B2 GetACP
 297 GetOEMCP
 1C1 GetCPInfo
 3EF MultiByteToWideChar
 5FE WideCharToMultiByte
 237 GetEnvironmentStringsW
 1AA FreeEnvironmentStringsW
 514 SetEnvironmentVariableW
 54A SetStdHandle
 2D7 GetStringTypeW
 9B CompareStringW
 3B1 LCMapStringW
 2B4 GetProcessHeap
 24C GetFileSizeEx
 523 SetFilePointerEx
 1EA GetConsoleCP
 1FC GetConsoleMode
 34E HeapSize
 34C HeapReAlloc
 19F FlushFileBuffers
 86 CloseHandle
 CB CreateFileW
 109 DecodePointer

 Summary

 2000 .data
 6000 .rdata
 1000 .reloc
 D000 .text

Which indicates that we import our GetGreeting function from Hello.lib/Hello.dll.

Exporting from a DLL

We create a new example to work with.

// Numbers.cpp
extern "C" int GetOne() {return 1;}
extern "C" int GetTwo() {return 2;}
extern "C" int GetThree() {return 3;}

Lets compile:

cl -c Numbers.cpp

We have 4 options for exporting these function to make them available for

Export flag command line

So far we’ve been using Export.

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>link Numbers.obj /NOENTRY /DLL /EXPORT:GetOne /EXPORT:GetTwo /EXPORT:GetThree
Microsoft (R) Incremental Linker Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

 Creating library Numbers.lib and object Numbers.exp

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>dumpbin /exports Numbers.dll
Microsoft (R) COFF/PE Dumper Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file Numbers.dll

File Type: DLL

 Section contains the following exports for Numbers.dll

 00000000 characteristics
 FFFFFFFF time date stamp
 0.00 version
 1 ordinal base
 3 number of functions
 3 number of names

 ordinal hint RVA name

 1 0 00001000 GetOne
 2 1 00001020 GetThree
 3 2 00001010 GetTwo

 Summary

 1000 .rdata
 1000 .text

We can also export under alias’s.

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>link Numbers.obj /NOENTRY /DLL /EXPORT:GetOne /EXPORT:GetTwo /EXPORT:GetThree /EXPORT:GetOnePlusTwo=GetThree
Microsoft (R) Incremental Linker Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

 Creating library Numbers.lib and object Numbers.exp

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>dumpbin /exports Numbers.dll
Microsoft (R) COFF/PE Dumper Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file Numbers.dll

File Type: DLL

 Section contains the following exports for Numbers.dll

 00000000 characteristics
 FFFFFFFF time date stamp
 0.00 version
 1 ordinal base
 4 number of functions
 4 number of names

 ordinal hint RVA name

 1 0 00001000 GetOne
 2 1 00001020 GetOnePlusTwo
 3 2 00001020 GetThree
 4 3 00001010 GetTwo

 Summary

 1000 .rdata
 1000 .text

Note

GetOnePlusTwo and GetThree are the same function with a different name. They are at the same
memory address.

Using a def file

In a new file, Numbers.def, put the following:

LIBRARY Numbers
EXPORTS
 GetOne
 GetTwo PRIVATE
 GetOnePlusTwo=GetThree

Now we can link with :

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>link Numbers.obj /DLL /NOENTRY /DEF:Numbers.def
Microsoft (R) Incremental Linker Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

 Creating library Numbers.lib and object Numbers.exp

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>dumpbin /exports Numbers.lib
Microsoft (R) COFF/PE Dumper Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file Numbers.lib

File Type: LIBRARY

 Exports

 ordinal name

 _GetOne
 _GetOnePlusTwo

 Summary

 C3 .debug$S
 14 .idata$2
 14 .idata$3
 4 .idata$4
 4 .idata$5
 C .idata$6

Inside your code

Another option is to declare exports inside your code. Take a look at Numbers2.cpp.

extern "C" __declspec(dllexport) int GetOne() { return 1;}
extern "C" __declspec(dllexport) int GetTwo() { return 2;}
extern "C" __declspec(dllexport) int GetThree() { return 3;}

We use __declspec(export) to do that same as what we were previously doing on the command line.
The

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>cl -c Numbers2.cpp
Microsoft (R) C/C++ Optimizing Compiler Version 19.26.28806 for x86
Copyright (C) Microsoft Corporation. All rights reserved.

Numbers2.cpp

D:\TestStaticIntoSharedLinking\cmake-build-release-visual-studio\dynamic_lib\test>dumpbin /EXPORTS Numbers2.dll
Microsoft (R) COFF/PE Dumper Version 14.26.28806.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file Numbers2.dll

File Type: DLL

 Section contains the following exports for Numbers2.dll

 00000000 characteristics
 FFFFFFFF time date stamp
 0.00 version
 1 ordinal base
 3 number of functions
 3 number of names

 ordinal hint RVA name

 1 0 00001000 GetOne
 2 1 00001020 GetThree
 3 2 00001010 GetTwo

 Summary

 1000 .rdata
 1000 .text

Declspec export merely tells the compiler to pretend that it got the exports from the
command line. They do the same job but its more convenient.

Pragma

Pragma directives can also be used to achieve the same, though this is not often used.
So Numbers3.cpp looks like this.

What happens when we load a DLL?

There are 5 steps, basically:

	Find the dll (Hello.dll)

	Map Hello.dll into memory

	Load any DLLs on which Hello.dll depends

	Bind imports from DLLs on which Hello.dll depends

	Call the entry point for Hello.dll to let it initialize itself.

Find the DLL

When we do

HMODULE HelloDll = LoadLibraryExW(L"Hello.dll", nullptr, o);

How does the loader know where to find Hello.dll?

If we passed an absolute path to LoadLibraryExW, this is easy as if its
there it’ll be loaded, if not it’ll fail. Note, you can load the same library
into the same script from two different drives (C Vs D), but not two
libraries with the same name from the same drive.

If its not an absolute path then the first thing that happens is the loader
will look to see whether the dll is a system dll. These are always loaded
from the same place for security. These are well known to the OS and the same
version of the library will always be loaded. For instance, kernel32.dll or
ole32.dll. This mechanism prevents dll hijacking.

If the dll is not in this small list of libraries, the loader will continue with
the search process. This is the search process:

	The directory from which the application is loaded

	The system directoy (C:WindowsSystem32or C:WindowsSysWOW64)

	The 16-bit system directory (C:WindowsSystem)

	The Windows Directory (C:Windows)

	The current directory

	The directories listed in %PATH% environment variable.

Once found, the search stops.

This process is highly customizable. For instance:

	DLL Redirection (.local)

	Side-by-size components

	add to %PATH%

	AddDllDirectory

	LoadLibraryEx Flags

Do some googling on these.

Map the DLL into Memory

The loader needs to

	Open the DLL file and read the image size

	Allocate a contiguous, page aligned block of memory of that size

	Copy the contents of each section into the appropriate area of that block of memory

Relocation

DLLs have a preferred base address. If the dll does not get loaded into its preferred base
address then the pointers in the dll will be pointing to random slots of memory.
Relocation fixes this.

Load Dependencies and Bind Imports

	For each DLL dependency:

	
	load the DLL

	Get the required imports to fill out the function pointer tables.

Initialize the DLL

DLLs have an optional entry point where it can do some initialization. Conventially
this is called DllMain but can be called anything.

Here is the signature.

BOOL WINAPI DllMain(HINSTANCE instance, DWORD reason, LPVOID reserved);

Where:

	instance = the DLL handle returned from LoadLibrary

	
	reason = indication of why the loaded is calling the entry point

	
	DLL_PROCESS_ATTACH = Called once, when DLL is loaded

	DLL_PROCESS_DETACH = Called once, when DLL is unloaded

	DLL_THREAD_ATTACH = Called each time a thread starts running

	DLL_THREAD_DETACH = Called each time a thread stops running

	reserve = more information for process attach or detach.

Returns True or False depending on load success.

Calls to DllMain are syncronized by a gloval lock called the Loader Lock. So
only 1 thread can be initializing a dll at one time.

Debugging DLL Load Failures

What if Hello.dll did not exist? Then you would get an error.
How do you debug this?

One way is to use a program called gflags.

Here I deleted Hello.dll. Now when we run a program that uses Hello.dll we get
and error.

Importing

We’ve already seen __declspec(dllexport) which is used inside our source files to
allow other programs access to the public interface. __declspec(dllimport) also exists,
and this is used inside programs that use a dll.

For instance, see NumbersCaller.cpp.

The __declspec(dllimport) statement tells the compiler than this function
is going to be imported. This is more efficient because the compiler can
do things a little differently.

Exporting Data

You can export variables as well as functions. When you do this you need
to use __declspec(dllimport).

Exporting C++ classes

This is possible. When you use __declspec(dllexport) on a class, rather
than a function, all the members of the class get exported.

However, You are NOT recommended to do exports on classes. You are too dependent on
a compiler. This will be hard to debug and will probably do wrong.

Powershell

Open windows explorer from this directory. ii is short for Invoke-Item

ii .

Travis

Some useful links:

referece: https://config.travis-ci.com/
syntax schema: http://json.schemastore.org/travis
some commands: https://devhints.io/travis
https://github.com/travis-ci/docs-travis-ci-com/issues/2004

Random Notes

Index

C code for wrapping

	void fakeFun(double *d) {

	printf(“I’m a double pointer from C: %f, %fn”, *d, *(d + 1));

}

	void function_that_takes_a_function(f1 fn, double *input, double *output) {

	printf(“From C: I’m a function that takes a functionn”);
printf(“From C: input: %fn”, *input);
printf(“From C: output before callback %fn”, *output);

(*fn)(input, output);
printf(“From C: output after callback: %fn”, *output);

}

	void function_that_takes_f2(f2 fn, double *input, double *output, double *ignored) {

	printf(“From C: I’m a function that takes a functionn”);
printf(“From C: input: %fn”, *input);
printf(“From C: output before callback %fn”, *output);

(*fn)(input, output, ignored);
printf(“From C: output after callback: %fn”, *output);

}

	void function_that_takes_ESfcnFG(ESfcnFG fg) {

	printf(“From C: hello from function_that_takes_ESfcnFGn”);
double *x;
x[0] = 1.0;
x[1] = 2.0;
double f = 1.0;
double g = 0.0;

// fg(x, &f, &g);
}

	Point *makePoint(int x, int y) {

	
	/**

	
	

	https://stackoverflow.com/questions/38661635/ctypes-struct-returned-from-library

*/

Point *point = (Point *) malloc(sizeof(Point));
int *p1 = (int *) malloc(sizeof(int));
int *p2 = (int *) malloc(sizeof(int));
point->x = x;
point->y = y;
return point;

}

	void freePoint(Point *point) {

	free(point);

}

Structures with ctypes

	class Point(ct.Structure):

	“””Example of using structs with ctypes.
https://stackoverflow.com/questions/65901925/how-to-create-a-c-struct-from-python-using-ctypes/65902099?noredirect=1#65902099
On the C end we have:

	typedef struct Point {

	int x;
int y;

} Point ;

	Point* makePoint(int x, int y){

	Point point = (Point) malloc(sizeof (Point));
point->x = x;
point->y = y;
return point;

}

	void freePoint(Point* point){

	free(point);

}

Then in Python:

>>> lib = ct.CDLL(library)
>>> lib.makePoint.restype = ct.POINTER(Point) # aka this class

	Then you can do

	>>> lib.makePoint.restype = ct.POINTER(Point)
>>> p = lib.makePoint(4, 5)
>>> print(p.contents.x)
>>> print(p.contents.y)

Be exceptionally careful with types! int in C maps to c_int32 in ctypes.

“””
fields = [

(“x”, ct.c_int32),
(“y”, ct.c_int32),

]

Callbacks

class Test(unittest.TestCase):

	def setUp(self) -> None:

	pass

	def test_ctypes_callback_fn_example(self):

	from ctypes import cdll

libc = cdll.msvcrt

IntArray5 = ct.c_int * 5
ia = IntArray5(5, 1, 7, 33, 99)
qsort = libc.qsort
qsort.restype = None

CALLBACK_FN = ct.CFUNCTYPE(ct.c_int, ct.POINTER(ct.c_int), ct.POINTER(ct.c_int))

	def py_cb(a, b):

	print(“Pycb”, a[0], b[0])
return 0

qsort(ia, len(ia), ct.sizeof(ct.c_int), CALLBACK_FN(py_cb))

	def testPassingDoubleArray(self):

	lb = ct.pointer(sres.DoubleArrayLen2(0.1, 0.1)) # double *lb,
sres.fakeFun(lb)

	def testPassingDoubleArrayUsingWrapperFn(self):

	lb = sres._makeDoubleArrayPtr([0.1, 0.1]) # double *lb,
sres.fakeFun(lb)

	def testFunctionPointerInIsolation(self):

	import ctypes as ct

lib = ct.CDLL(“SRES”)

F1_CALLBACK = ct.CFUNCTYPE(None, ct.POINTER(ct.c_double * 2), ct.POINTER(ct.c_double), ct.POINTER(ct.c_double))
lib.function_that_takes_a_function.argtypes = [

F1_CALLBACK, ct.POINTER(ct.c_double * 2),
ct.POINTER(ct.c_double),
ct.POINTER(ct.c_double)

]
lib.function_that_takes_a_function.restype = None

	def func_to_pass_in(d1, d2, d3):

	print(“hello from Python: “)

function_that_takes_a_function(func_to_pass_in, sres._makeDoubleArrayPtr([0.1, 0.1]))
lib.function_that_takes_a_function(F1_CALLBACK(func_to_pass_in), sres._makeDoubleArrayPtr([0.1, 1.2]),

ct.pointer(ct.c_double(4.0)), ct.pointer(ct.c_double(6.0)))

	def testFunctionPointerInIsolationAndUpdateAValue(self):

	import ctypes as ct

lib = ct.CDLL(“SRES”)

F1_FUNCTION_PTR = ct.CFUNCTYPE(None, ct.POINTER(ct.c_double), ct.POINTER(ct.c_double))

	lib.function_that_takes_a_function.argtypes = [

	F1_FUNCTION_PTR, ct.POINTER(ct.c_double), ct.POINTER(ct.c_double)

]
lib.function_that_takes_a_function.restype = None

	def func_to_pass_in(x, y):

	print(“From Python: hello from Python: “)
print(“From Python: x, y: “, x.contents, y.contents)
new_value = x.contents.value + y.contents.value
new_value_double_ptr = ct.pointer(ct.c_double(new_value))

	ct.memmove(ct.cast(y, ct.c_void_p).value,

	ct.cast(new_value_double_ptr, ct.c_void_p).value,
ct.sizeof(ct.c_double))

function_that_takes_a_function(func_to_pass_in, sres._makeDoubleArrayPtr([0.1, 0.1]))
input = ct.c_double(4.0)
output = ct.c_double(1.0)
input_ptr = ct.pointer(input)
output_ptr = ct.pointer(output)
lib.function_that_takes_a_function(F1_FUNCTION_PTR(func_to_pass_in), input_ptr, output_ptr)

	def testFunctionPointerInIsolationAndUpdateAValue2(self):

	import ctypes as ct

lib = ct.CDLL(“SRES”)

	ESFcnFG_FUNCTION_PTR = ct.CFUNCTYPE(None, ct.POINTER(ct.c_double * 2), ct.POINTER(ct.c_double),

	ct.POINTER(ct.c_double))

	lib.function_that_takes_f2.argtypes = [

	ESFcnFG_FUNCTION_PTR, ct.POINTER(ct.c_double), ct.POINTER(ct.c_double), ct.POINTER(ct.c_double)

]

lib.function_that_takes_f2.restype = None

	def func_to_pass_in(x, y, z):

	print(“hello from Python: “)
print(“x, y: “, x.contents[0], y.contents)
new_value = x.contents[0] + x.contents[1] + y.contents.value
new_value_double_ptr = ct.pointer(ct.c_double(new_value))

	ct.memmove(

	ct.cast(y, ct.c_void_p).value,
ct.cast(new_value_double_ptr, ct.c_void_p).value,
ct.sizeof(ct.c_double))

function_that_takes_a_function(func_to_pass_in, sres._makeDoubleArrayPtr([0.1, 0.1]))
input = ct.pointer(ct.c_double(4.0))
output = ct.pointer(ct.c_double(1.0))
ignored = ct.pointer(ct.c_double(2.0))
lib.function_that_takes_f2(ESFcnFG_FUNCTION_PTR(func_to_pass_in), input, output, ignored)

	def test_use_the_problematic_function_pointer_outside_context_of_SRES(self):

	import ctypes as ct

lib = ct.CDLL(“SRES”)

ESfcnFG_TYPE = ct.CFUNCTYPE(None, ct.POINTER(ct.c_double * 2), ct.POINTER(ct.c_double), ct.POINTER(ct.c_double))

	lib.function_that_takes_ESfcnFG.argtypes = [

	ESfcnFG_TYPE

]
lib.function_that_takes_ESfcnFG.restype = None

	def cost_fun(x, f, g):

	print(“hello from cost_fun”)
sim = generateData(x.contents[0], x.contents[1])
cost = 0
for i in range(10):

cost += (EXP_DATA[i] - sim[i]) ** 2

cost_dbl_ptr = ct.pointer(ct.c_double(cost))

copy the value from Python to C. If we don’t do this, the value gets deleted.
ct.memmove(ct.cast(f, ct.c_void_p).value, ct.cast(cost_dbl_ptr, ct.c_void_p).value, ct.sizeof(ct.c_double))

lib.function_that_takes_ESfcnFG(ESfcnFG_TYPE(cost_fun))

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to CiaransLabBook’s documentation!

 		
 Docker

 		
 Commands

 		
 CMake

 		
 Cross platform CMake

 		
 Copy or install a file

 		
 API Control

 		
 Git

 		
 Submodule

 		
 Linux

 		
 Find a library on the system

 		
 Building on linux

 		
 Linking static libraries into shared

 		
 Inspecting broken builds

 		
 Windows

 		
 Travis

 		
 Random Notes

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

